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Background:

» Commercial and residential buildings consumed almost 40% of the
primary energy and approximately 70% of the electricity in United States

» The energy used by the buildings sector accounts for approximately 47%
of the country’s carbon emissions and continues to increase.

i
Buildings 48.7%

(47.8 QBtu)

Industry 23.2%
(22.7 QBtu)

Transportation 28.1%
(27.5 QBtu)

U.S. Energy Consumption by Sector

Source: ©2011 2030, Inc. / Architecture 2030. All Rights Reserved.
Data Source: U.S, Energy Information Administration (2011).

Data Source: U.S. Energy Information Administration (EIA)
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Motivations: ma
> Increase the utilization of distributed renewable
energy resources

> Reduce carbon emissions and non-renewable
resource consumption

» Need a promising solution from economic,
environmental and political perspectives

Objectives:

» To utilize as much self-generated renewable electricity as possible to satisfy
the power demand of residential green house (RGH)

» To minimize the day-ahead operational cost of RGH while satisfying
customer’s preference and various operational constraints
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» On-site renewable energy generation (e.g., PV panel, wind turbine)

» Distributed energy storage devices (e.g., electric vehicle, battery pack)
» Controllable load (e.g., smart appliances)
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Challenges:

» Uncertainty: The inherent intermittency and
variability of distributed renewable energy
resources (e.g., wind and solar) complicate
the real-world operations.

» Forecasting error of renewable generation is
still large

» Need to satisfy a number of physical and
cyber constraints, as well as customer’s
preference ™

> Self-confined and self-balanced small system gijjjj

» Utilities are concerned about how the high
penetration of RGH will affect the grid
stability. o |

> Need a well-justified business model 0
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The Day-ahead Resource Scheduling Process

Day-ahead base load
forecast
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Day-ahead electricity marketing
price & outdoor temperature

Day-ahead renewable
energy forecast
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Day-ahead scheduling
algorithm
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Dispatch of controllable loads,
charge/discharge status of DESD

l

Comparison between stochastic
and deterministic approaches
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» The deterministic approach is sensitive to the point forecasting errors.
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» Formulated the scenario-based stochastic energy scheduling
» EXxplicit representation of the uncertainty in problem formulation

» Minimize the expectation of costs

ftotat = fgria + FpEsp + [sotar

f-grfd Dispateh of controllal |I laads harge/discharge status of DESD
" i h-'l f' i tl "l
= Zpr x[ P + +‘u,_~P,; - HDPD B pmb X Z( uB t_P' tu};_‘{PH_”d —MP{;SJ}]

Electncity price at t-th interva Probability .;1-ﬂu|.,m.ﬁ Solar generation at t-th

interval in scenano s
fpEsp = E F(piﬂbSZ(uBfP +uﬂdp

Degradation cost of DESD 1- rng charge/discharge process

p; - day-ahead electricity marketing price ($/kWh) at t-th time interval.

P} & P} : the power consumption rate (kW) of uncontrollable loads and HVAC system, respectively, at t-th time interval

Pg_'ﬁ & Pg_'fi : DESD (e.g. battery banks) charging and discharging process in scenario s, at t-th time interval

Pg's : the on-site renewable generation (kW) in scenario s, at t-th time interval

Pr & Pp: the rated power (kW) of clothes washer and dryer

probs: an equal probability of all the scenarios

ug, uf, up . & up 4 - the ON/OFF status (e.g. 1/0) of clothes washer, dryer, charge and discharge process of DESD, respectively

n : the degradation cost coefficient ($/kW) for DESD.
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System constraints:

» Local constraints of controllable loads

I
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» DESD limits
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Optimization Framework:

CPLEX:

«  Solve MILP optimization problems
Minimize the operating cost

\. /

IR,

Formulate/update the optimization problem and constraints
*  Route the optimal control variables
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System Inputs:
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Figure 1. The outdoor temperature Figure 2. The corresponding HVAC operation
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Figure 3. uncontrollable load profile Figure 4. The day-ahead electricity data from utility
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Result Analysis

» Compared the charge/discharge/standby mode of DESD and the optimal
dispatch of controllable loads using both stochastic and deterministic modeling

Load Cloth Washer Dryer
Stochastic 3:00 am —4:00 am 11:15am - 12:45 pm

Deterministic 3:00am - 4:00 am 9:15am - 10:45 pm
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DESD charge/standby/discharge (1/0/-1) Status in Deterministic and Stochastic Case
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Result Analysis

» Evaluated the performance of day-ahead energy scheduling by running a
economic dispatch simulation that takes into account the actual value of solar
power instead of forecasted values

» Demonstrated the notable cost savings of the proposed stochastic approach
over deterministic approach over 10 different days

Cost Savein Percentage
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The cost savings of stochastic modeling over deterministic modeling
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Future Work

» The existing framework can be extended to real-time operation design
with the consideration of real-time weather input, customer preference
and comfort level

» This design can be scaled up to a community prospective, since
renewable generation facilities will be more easily accessible in the
future, every single home can self-generate electricity and participate
into the electricity market

» Adopt distributed control approaches (e.g. Distributed Model
Predictive Control) to perform real-time power dispatch
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